Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria.
نویسندگان
چکیده
Membrane vesicles are released from the surfaces of many gram-negative bacteria during growth. Vesicles consist of proteins, lipopolysaccharide, phospholipids, RNA, and DNA. Results of the present study demonstrate that membrane vesicles isolated from the food-borne pathogen Escherichia coli O157:H7 facilitate the transfer of genes, which are then expressed by recipient Salmonella enterica serovar Enteritidis or E. coli JM109. Electron micrographs of purified DNA from E. coli O157:H7 vesicles showed large rosette-like structures, linear DNA fragments, and small open-circle plasmids. PCR analysis of vesicle DNA demonstrated the presence of specific genes from host and recombinant plasmids (hly, L7095, mobA, and gfp), chromosomal DNA (uidA and eaeA), and phage DNA (stx1 and stx2). The results of PCR and the Vero cell assay demonstrate that genetic material, including virulence genes, is transferred to recipient bacteria and subsequently expressed. The cytotoxicity of the transformed enteric bacteria was sixfold higher than that of the parent isolate (E. coli JM109). Utilization of the nonhost plasmid (pGFP) permitted the evaluation of transformation efficiency (ca. 10(3) transformants microg of DNA(-1)) and demonstrated that vesicles can deliver antibiotic resistance. Transformed E. coli JM109 cells were resistant to ampicillin and fluoresced a brilliant green. The role vesicles play in genetic exchange between different species in the environment or host has yet to be defined.
منابع مشابه
Prevalence of Virulence Genes of Escherichia Coli O157:H7 Isolated from Patients with Urinary Tract Infections in Shiraz, Iran
Abstract Background and Objective: Escherichia coli O157:H7 is one of the most well-known pathogenic bacteria worldwide that can develop severe diseases such as hemolytic uremic syndrome (HUS). This study aimed to assess the prevalence of virulence genes of E. coli O157:H7 in patients with suspected urinary tract infections (UTIs). Material and Methods: This cross-sectional study was co...
متن کاملIsolation, Characterization and Antibiotic Resistance of Shiga Toxin-Producing Escherichia coli in Hamburger and Evolution of Virulence Genes stx1, stx2, eaeA and hly by Multiplex PCR
Background & Objectives: Shiga toxin-producing Escherichia coli (STEC) O157:H7 have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans. E.coli O157:H7 colonizes the digestive tract of cattle and is transmitted to humans by food and water. The objectives of this study were to characterize the prevalence of E.coli O157:H7 isolates in ham...
متن کاملشیوع ژنهای شیگا توکسین، اینتیمین و همولیزین در سویههای اشریشیاکلی O157:H7 از نمونههای گوشت چرخ کرده کارخانجات صنعتی شهرستان شیراز
Introduction: Escherichia coli O157:H7 is one of the major foodborne illness and sporadic case of human disease, hemorrhagic colitis and hemolytic-uremic syndrome. The purpose of this study is to survey the prevalence of Escherichia coli O157:H7 virulence genes from ground meat in Shiraz. Methods: In this research 504 samples of ground meat were collected from three main factories of meat prod...
متن کاملDetection of Shiga toxin-producing Escherichia coli (STEC) in faeces of healthy calves in Mashhad, Iran
The aim of this study was to identify virulent Shiga toxin-producing Escherichia coli (STEC) strains isolated from faecal samples of 100 clinically healthy calves. In the present study, a total of 100 Escherichia coli (E. coli) isolates from clinically healthy calves belonging to 6 different farms located in Khorasan Razavi province, Iran, were examined for presence of virulence genes character...
متن کاملBile Salts Affect Expression of Escherichia coli O157:H7 Genes for Virulence and Iron Acquisition, and Promote Growth under Iron Limiting Conditions
Bile salts exhibit potent antibacterial properties, acting as detergents to disrupt cell membranes and as DNA-damaging agents. Although bacteria inhabiting the intestinal tract are able to resist bile's antimicrobial effects, relatively little is known about how bile influences virulence of enteric pathogens. Escherichia coli O157:H7 is an important pathogen of humans, capable of causing severe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 66 10 شماره
صفحات -
تاریخ انتشار 2000